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High-quality Gaussian basis sets for fourth-row atoms 
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Summary. Energy-optimized Gaussian basis sets of triple-zeta quality for the 
atoms Rb-Xe have been derived. Two series of basis sets are developed; 
(24s 16p 10d) and (26s 16p 10d) sets which we expand to 13 dand 19p functions 
as the 4d and 5p shells become occupied. For the atoms lighter than Cd, the 
(24s 16p 10d) sets with triple-zeta valence distributions are higher in energy than 
the corresponding double-zeta distribution. To ensure a triple-zeta distribution 
and a global energy minimum the (26s 16p 10d) sets were derived. Total atomic 
energies from the largest basis sets are between 198 and 284/zEH above the 
numerical Hartree-Fock energies. 
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1 Introduction 

Modern computational chemistry is to a large extent based on the use of finite 
basis sets of Gaussian-type orbitals (GTOs) for analytic expansion of one-parti- 
cle functions. First introduced in quantum chemistry by Boys in 1950 [1], GTOs 
permit rapid evaluation of multicenter two-electron integrals, and for calcula- 
tions on polyatomic molecules there is presently no practical alternative. 

The chief disadvantage of GTO basis sets is that the functions give a poor 
representation of the region close to the atomic nucleus; thus for very accurate 
work a large number of basis functions are needed. While the integral evaluation 
time was a limiting factor in earlier work, the availability of more powerful 
computers and the development of efficient integral evaluation algorithms has 
reduced this limitation significantly. Today, in highly accurate work with an 
extensive treatment of electron correlation, the integral evaluation usually ac- 
counts for a relatively small fraction of the total computational effort. In 
addition, general contraction schemes, such as the recently developed atomic 
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natural orbital (ANO) method [2], explicitly intended for use in correlated 
calculations, have eliminated much of the burden of handling large basis sets 
beyond the integral evaluation stage. At the same time, stare-of-the-art calculations 
have reached the point where the lack of high-quality basis sets can be an obstacle 
for accurate studies [3-6]. 

For some time we have been involved in the development of high-quality energy 
optimized GTO basis [7-11]. In this work we extend these efforts to include sets 
oftriple-zeta (TZ) quality - representing the main amplitude ofeach atomic orbital 
by at least three primitive GTO functions - for the fourth-row elements. Basis sets 
for all or groups of these elements have been derived previously by Faegri [ 11], 
Huzinaga [ 12], Hyla-Krispin et al. [13], and Gropen [ 14], and also special sets as 
the MINI and MIDI [15] and well-tempered sets [16] exist. However, since none 
of these are of TZ quality, the sets presented here are significantly more accurate. 
While relativistic effects become somewhat important for this row, their effect can 
to a large extent be accounted for through first order perturbation theory. Thus 
the basis sets presented in this work will principally be useful for nonrelativistic 
calculations where it is desirable to minimize the inaccuracies arising from the finite 
basis approximation. In addition, these basis sets, supplemented with additional 
compact functions, should be useful for high-quality relativistic calculations [ 17]. 

Although essentially all nonrelativistic calculations have employed a point 
charge for the nucleus, the finite size of the nucleus is possibly important for very 
heavy atoms. In this work we investigate the effect of nuclear size on the basis 
set and SCF energy of Xe and show that the energy gained by reoptimizing the 
exponents is insignificant for the size of the basis sets employed in this work. 

2 Results and discussion 

The details of our computational method and the strategies followed in energy 
optimizations of these basis sets have been described previously [7-9]. We have 
carried out pilot calculations on Ag and Xe to determine the size of basis set 
needed to obtain an energy balanced triple-zeta valence description. Unfortu- 
nately, with the size of basis required for a TZ valence distributions, we are faced 
with a problem of multiple energy minima. This has been discussed for the 
first-row transition-metal atoms [8] and manifests itself in two close-lying min- 
ima on the energy surface, each corresponding to a different distribution of 
orbital exponents. For Ag it was possible to find a (23s 15p 12d) basis set which 
had a TZ valence description, but this size of basis set did not support a TZ 
minimum for the elements lighter than Rh. Increasing the size to (24s 16p 13d), 
corresponding to (24s 16p 10d) for elements without occupied 4d orbitals, and 
(24s 19p 13d) for elements with occupied 5p orbitals, we are able to locate TZ 
minima for all atoms of the row except Rb, St, and Y. However, even for basis 
sets of this size, more energy is gained by improving the 4s description rather 
than providing a TZ 5s, and therefore distributions yielding a double-zeta 5s are 
lower in energy for the elements lighter than Cd. 

To provide basis sets that ensure a TZ distribution and a global energy 
minimum, we have also derived (26s 16p 10d) sets supplemented by additional 
basis functions as the 4d and 5p shells become occupied. Thus, our largest set for 
Y is (26s 16p 13d) while the corresponding Xe set is (26s 19p 13d). For these 
sets the TZ distribution represents a stable, single minimum, with no competing 
DZ minimum nearby. 
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The problem with stabilizing the TZ distribution also influences the choice of 
atomic state used in the optimization of the basis sets. The states derived from 
the orbital occupations 5s24d n, 5s 14d~ + ~, and 5s°4d "+ 2 are close in energy for 
the transition metal atoms of the fourth row and only Y, Zr, Tc, and Cd have 
a 5s24d n ground state configuration. Pd has 5s°4d n+2, while Nb, Mo, Ru, Rh, 
and Ag have 5s14d n+l ground states. For transition-metal atoms, rather than 
using the ground states, we have chosen to use the lowest 5s24d ~ states for the 
orbital exponent optimizations as this stabilizes the TZ distribution for the 5s 
shell-  with more 5s electrons the contribution to the total electronic energy 
from this shell increases, making an optimal description of the 5s orbital 
important. Also, previous experience with calculations involving transition metal 
atoms has shown that the basis sets optimized for the lowest s2d ~ state, 
supplemented with suitable diffuse functions, yield a balanced description of the 
low-lying states [18], and provide a good starting point for molecular calcula- 
tions where states derived from several of these occupations interact. 

The energjes obtained with the various basis sets are listed in Table 1, where 
we also give a comparison with the numerical Hartree-Fock (NHF) results. 
All energies calculated with the basis sets containing 24 s functions are within 
400 # E n  of the numerical results, while the 26 s sets have a maximum deviation 
of 284/~En (for Cd) and for most sets are within 250 #En of the NHF results. 
The apparently discontinuous improvement in quality between Cd and In is due 
to the addition of three p functions which not only describe the 5p shell, but also 
improve the description of the inner p shells. Supplementary functions were also 
optimized to describe Rb (2p), Sr (3p), and I -  (1S). However, the energy 
improvement over employing even-tempered diffuse functions (ratio of 2.5) is 
insignificant. For the transition-metal atoms, previous experience has shown that 
adding an even-tempered d and three even-tempered p functions is adequate 
[10, 18]. 

As noted in the introduction, a possible problem with calculations using very 
large basis sets for heavy atoms is the finite size of the nucleus. While most 
quantum chemical calculations are based on point-charge nuclei, the finite size of 
the nucleus should be accounted for in accurate calculations on heavy atoms. A 
simple model for finite size nuclei that has been successfully employed in 
relativistic calculations is a charge distribution represented by a single Gaussian 
[19]. Calculations based on a Fermi distribution suggest that the exponent for 
this Gaussian nuclear charge distribution should be approximately 1.8 × 108 for 
Xe. Considering that the highest s-orbital exponent for the Xe (26s 19p 13d) set 
is 1.7 x 108, the point nucleus basis set contains at least one function that is 
almost entirely within the nuclear region. 

The main effect of the finite nuclear size is to raise the total electronic energy 
of the atom, due to reduced nuclear attraction. This in itself need not affect 
chemical calculations significantly, as the changes induced in the low-lying core 
orbitals - mainly ls - have a marginal effect on the valence orbitals. To investi- 
gate the importance of using a finite nucleus, we have optimized Xe basis sets 
ranging from (20s 12p 7d) to (25s 12p 7d) both for the point nucleus and for the 
Gaussian charge distribution (GCD). The energy increase due to the finite 
nuclear size of Xe is 103.6 mEn (constant for all basis sets) out of a total energy 
of almost -7232 E n. Employing the finite nucleus pushes the ls orbitals 
outwards compared to the point charge, causing the optimal values of the ls 
exponents to increase more rapidly for point nuclei than for the GCD. In Fig. 1, 
a plot of the ratlos of the exponents optimized using the point nucleus and the 
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Table 1. Atomic energies for fourth-row atoms from numerical Hartree-Fock (NHF) and finite basis 
(GTO) calculations in hartree units (En), and their difference (A) in I.tEn, DZ (TZ) - double (triple) 
zeta for 5s shell 

Atom NHF energy Basis GTO energy d 

Rb (2S) -2938.357457 24,16,10 DZ -0.357225 
26,16,10 -0.357254 

Sr (1S) -3131.545689 24,16,10 DZ -0.545457 
26,16,10 -0.545491 

Y (2D) -3331.684169 24,16,13 DZ -0.683920 
26,16,13 -0.683964 

Zr (3F) -3538.995065 24,16,13 DZ -0.994805 
24,16,13 TZ - 0.994784 
26,16,13 -0.994855 

Nb (4F) -3753.552031 24,16,13 DZ -0.551759 
24,16,13 TZ -0.551742 
26,16,13 -0.551816 

Mo (SD) -3975.443320 24,16,13 DZ -0.443036 
24,16,13 TZ - 0.443022 
26,16, l 3 - 0,443098 

Tc (6S) - 4204.788736 24,16,13 DZ - 0.788442 
24,16,13 TZ -0.788431 
26,16,13 - 0.788509 

Ru (SD) -4441.487348 24,16,13 DZ -0.487032 
24,16,13 TZ -0.487026 
26,16,13 -0.487105 

Rh ( 4 F )  -4685.801249 24,16,13 DZ -0.800916 
24,16,13 TZ -0.800914 
26,16,13 -0.800996 

Pd (3F) -4937.783027 24,16,13 DZ -0.782677 
24,16,13 TZ - 0.782679 
26,16,13 -0.782764 

Ag (2D) -5197.517887 24,16,13 DZ -0.517520 
24,16,13 TZ -0.517526 
26,16,13 -0.517613 

Cd (IS) -5465.133142 24,16,13 DZ -0.132758 
24,16,13 TZ -0.132768 
26,16,13 -0.132858 

In (2p) -5740.169155 24,19,13 DZ -0.168834 
24,19,13 TZ -0.168848 
26,19,13 -0.168938 

Sn (3p) -6022.931695 24,19,13 TZ -0.931397 
26,19,13 -0.931486 

Sb (4S) -6313.485321 24,19,13 TZ -0.485029 
26,19,13 -0.485117 

Te (3p) -6611.784059 24,19,13 TZ -0.783821 
26,19,13 -0.783850 

I (2p) -6917.980895 24,19,13 TZ -0.980596 
26,19,13 - 0.980685 

Xe (IS) -7232.138365 24,19,13 TZ -0.138065 
26,19,13 -0.138154 

232 
203 
232 
198 
249 
205 
260 
281 
210 
272 
289 
215 
284 
298 
222 
294 
305 
227 
316 
322 
243 
333 
335 
253 
350 
348 
263 
367 
361 
274 
384 
374 
284 
321 
307 
217 
298 
209 
292 
204 
297 
209 
299 
210 
300 
211 
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Fig. 1. The ratio between orbital 
exponents from basis sets 
optimized for a point nucleus and 
for a Gaussian finite nuclear 
charge distribution (GCD), 
respectively. The plot shows 
R i = ~(point ) i /~(GCD)i  

(i = 1, 2 . . . . .  10) for Xe sets 
(20s 12p 7d) to (25s 12p 7d) from 
bottom to top. Broken line: 

curves for (20s 12p 7d), 
(22s 12p 7d), and (24s 12p 7d) 

GCD for the various sets clearly shows how the finite nucleus keeps the 
exponents smaller. However, for the size of basis sets considered here, the energy 
gained from reoptimizing the point-nucleus basis sets for a GCD nucleus is 
insignificant; ranging from 63/tE« for the (20s 12p 7d) sets to 19/~En for the 
(25s 12p 7d) set. An interesting feature of basis sets optimized for a finite-sized 
nucleus is that the ratio between the two largest s orbital exponents is no longer 
constant, which is the case for point-nucleus basis sets. Thus, for Xe this ratio is 
an almost constant 6.69 using a point nucleus, whereas it varies from 5.82 to 4.51 
for the GCD basis sets. 

3 Conclusions 

Energy-optimized high-quality GTO basis sets have been presented for the 
fourth-row atoms, Rb to Xe. The largest sets have a TZ valence distribution and 
are within 284/tEn of the NHF energy. Employing a finite-size nucleus is shown 
to raise the energy slightly compared to employing a point charge, and to push 
the core orbitals outwards. However, the energy gain from reoptimizing the 
exponents from a point-charge nucleus basis set is insignificant. All of the basis 
sets optimized in this work are available from QCPE [20] and as a NASA 
technical report [21]. 
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